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Saturation magnetization of nanosize ferromagnets (nanoparticles and  nanoclusters) does not follow the Bloch  T3/2   law, 
known to be valid for macroscopic materials. In the absence of the „small size” formula of magnetization one usually uses a 

phenomenological power law αT with a size  dependent exponent  ,α   which is motivated simply by its flexibility  in fitting 
the observed behavior. We argue on the inconsistency of such a desciption and present an analytic derivation of the 
respective expression for magnetization in which generalizes  the Bloch formula to a finite size system. Comparison to the 
experimental  data on nanoclusters and nanoparticles demonstrates a good agreement with this expression and its utility for 
a better  understanding of the underlying physics.       
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1. Introduction 
 
During the last two decades, traditionally idealized 

examples of solid state physics, like atomic or spin chains 
[1], ultra-thin (one-layer) magnetic films [2], etc., have 
been obtained experimentally and investigated 
theoretically [3 - 6]. Moreover, systems of reduced size 
and dimensionality like, e.g., magnetic nanostructures 
(particles, clusters, wires etc.) serve as key components in 
a growing range of applications from electronics to 
medicine. One of the important consequences of device 
miniaturization is that their properties differ significantly 
from those of the bulk systems. There may be multiple 
reasons responsible, such as a high surface to volume 
ratio, strong size and shape dependence, modification of 
electronic properties, more prominent role of quantum 
effects etc. [7]. Thus, a dramatic decrease of saturation 
magnetization and critical temperature with the size of 
nanoparticles at about  3-5  nm (called "small" 
nanoparticles in [8]) can be explained by the dominant 
contribution of the surface layer with a depleted 
polarization, e.g. [9]. On the other hand, since the effects 
of demagnetization field and domain wall formation are 
reduced with sample size, the nanoscale is favorable to 
magnetism because of the possibility to support single 
domain fully polarized structures extending to hundreds of 
nanometers [10, 11]. However, even in this case large 
deviations from the Bloch " T3/2 " law for the 
temperature variation of the saturation magnetization  

)(TM   [12] are known both from numerical solution of 
self-consistent equations describing Heisenberg spin 
clusters [13] and from experiments on nanoparticles [14]. 
This law has been derived by considering magnon 

excitations in a  D3   infinite crystal and gives an 
adequate description of bulk ferromagnetic materials 
below the Curie temperature,  cT  , e.g.  1043 K  for iron. 
The common practice in describing experimental data or 
numerical simulations on nanoparticles is to use a 
modified Bloch formula, e.g. [8,11,13, 15]. 

  
( ).1)( 0

αγTMTM −=                     (1) 
 

The three parameters fitted to the observed values are 
strongly size dependent and approach the bulk limit for 
larger samples, over hundreds of  nm . It turns out that 
values of  α   show little regularity with size variation, 
and can be both larger and smaller than in the bulk,  3/2, 
depending on their preparation technology, see e.g. [9]. It 
is also often argued that the obtained values of  γ   are           
„much larger” in nanoparticles than in the bulk material, 
although this quantity differs even the measure units. Such 
confusing arguments are induced by, e.g., the expectation 
of magnon softening in smaller particles (e.g. Ch. 6.9 of 
the review [9]) and the known decrease with magnon 
stiffness of the Bloch factor  B  in the corresponding 
temperature dependence  2/3TB×   of the bulk material. 
However, aside from the conveniency and flexibility of the 
modified form (0) of the Bloch law in representing the 
observed behavior of magnetization, its microscopic 
motivation was not discussed before and remains unclear. 
Moreover, it seems impossible to connect the decimal 
numerical values of  α   obtained from this fitting formula 
to the fractional powers generated by magnon spectra (see 
the derivation below). 

In the analysis presented in the next sections we 
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consider the low temperature expansion within a 
microscopic model of a finite size ferromagnet and derive 
an explicit expression for the main terms. This leads to a 
different form of the finite size modification of the Bloch 
law, which is then compared to the available data. It has to 
be mentioned that at sufficiently low temperatures (which 
may reach dozens of Kelvin for small nanoparticles) the 
modified form becomes totally inadequate for the 
description of the magnetization because it is unable to 
capture the observed qualitative change in the temperature 
dependence  (e.g. an inflection point [16]). There exist 
different scenarios proposed in the literature to explain this 
lower temperature deviation from the Bloch law [17, 9], 
e.g., the discrete, quantized nature of the magnon spectrum 
in confined systems [17, 18], magnetic properties related 
to the surface or finite width shell of nanoparticles [8], etc. 
Our consideration does not include the surface effects and 
does not refer to this lower temperature regime, but rather 
to the intermediate temperatures above this interval and 
below  Tc, where Eq.(0) is used as a standard tool of data 
analysis. 

 
 
2. Finite size modification of the Bloch law 
 
The behavior of noninteracting separate nanoparticles 

can readily be studied experimentally [16, 19]. As a model 
of a single monodomain ferromagnetic particle we 
consider a simple finite  NNN ××   cubic lattice with 
periodic boundary conditions described by the quantum 
Heisenberg Hamiltonian with nearest neighbor interaction: 

 
( ).2SJH ji

ij

−−= ∑ SS                     (2) 

There exist, of course, many additional factors that 
may be relevant for a more detailed description, like 
anisotropic interaction, different boundary conditions, 
shape of the sample etc. However, it is reasonable to 
assume that the generic features of the finite size effects 
should be present already in this "simplified" model. 
Moreover, in the present treatment we neglect the effect of 
magnon-magnon interaction, taking into account that, as 
has been proved by Dyson in a series of seminal papers, 
this effect shows up for higher powers of the low 
temperature expansion (for a  D3   lattice it is  )4T   due 
to the fact that the interaction cross-section goes as a 
product of magnon momenta [20, 21]. 

The magnetization density (in units of  gBµ ) is 
given by the expression  

( ) ( ),exp1
1

3 k
0k

εβn
N

STM
n

−−= ∑∑
∞

= ≠

         (3) 

where the linear size  N   is in units of nearest neighbor 

distance,  ( ) 1−= TkBβ   relates to the inverse temperature 
and the magnon spectrum for a simple cubic lattice is 
( ( )321 ,, kkk=k  ): 
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Here a remark on the Eq. (2) can be made that 
"linearization" of  kε   to a parabolic dispersion, 
commonly assumed at low temperatures, is not justified at 
nanoscale because the difference between long and short 
waves is not well defined, the parameter  N/2π   is not 
"infinitesimally small" anymore and the sum in Eq. (3) can 
not be replaced by an integral. 
Thus, we have to calculate the quantity  
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As has been shown earlier [22] the sum over wave-vector 
in Eq. (3) generates a series of modified Bessel functions: 
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The first term in (4) corresponds to the 
thermodynamic limit  ∞→N  , with the leading 
contribution to the low temperature expansion representing 
the Bloch law 

( ) ( )( )30
1

exp nJSInJSM
n

TDL ββ−=∆ ∑
∞

=

 

 

( )( ) ( )( ) ...,22/5
16

322/3 2/52/3 ++= −− JSJS πβζ
π

πβζ  

 
where  ( )xζ   is the Riemann  −ζ  function [23]. The 

finite  N   corrections are contained in the terms with the 
Bessel functions of higher order [24,25]. However in the 
present case the situation is more complicated because our 
series contains two "large" parameters ( JSβ   and  N  ), 
while their ratio may be finite. To develop a low 
temperature expansion of the remaining terms in (4) we 
use the integral representation of the Bessel function 
 

( ) ( ) ( )( ) ( ) .cos2/sin2expexp 2

0 π
φφφβββ

π dkNJSnnJSInJS kN −=− ∫
 

Then with exponential accuracy,  ( ),2exp JSβ−  the 
low temperature expansion of (4) becomes  
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It can now be seen that consecutive terms in the last 

line correspond to an expansion in powers of temperature. 
The first line of the Eq. (5) corresponds to the limit  

∞→N   and the series under integration, containing the 
finite size correction, can be expressed in terms of Jacobi 
elliptic theta function, e.g. 
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Next step is to use an important identity due to Jacobi 
which can be put in a suggestive form 
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where we have introduced the parameter 
 

( ),2/2 JSNP πβ=                             (9) 
 

which plays a key role in the low temperature physics at 
nanoscale. Thus, it follows from the identity (7) that the 
value  nP =   continuously connects the region of an 
exponential dependence of the  3θ   function upon  P/n,  

when  ,nP >   from an exponential in  n/P,   when  
.nP <   The two exponential series ensure a fast 

convergence and this property allows to cast Eq. (6) in the 
following form 
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where  θ   is the Heaviside theta function. The higher 
order terms in the second line of Eq.(8), which start with  

( )( ),/ 32/32/3 NPJSO ≈−β  preserve the same structure 
as shown above. It can now be seen that the special role of 
the condition  1=P   is due to the fact that at this point 
the familiar  T   expansion for the thermodynamic limit (in 
the first line) is completely canceled by the algebric terms 
of the finite  N   correction (the second line and higher 
order terms), signifying a qualitative change in the 
temperature behavior. Indeed, for  ,1>P   due to the 
presence of Heaviside theta functions in (8), which give 
the main contribution to the series are expressed through 
Harmonic numbers, e.g. like 
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The remaining exponentials can be calculated by 

Euler-Maclaurin formula and give only a small correction. 
In this way we find that the finite size modification of the 
Bloch law is determined by the expression: 
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The corrections are of the order  T5/2   and  1/N3.   

E.g., the correction coming from the renormalization of 
magnon dispersion with temperature  3T   can also be 
neglected for  cTT   [21]. This expression is valid for 
the condition that 

./2 2NJSTkB π>                         (12) 
 

At lower temperatures, when  ,1<P   due to term 
cancelations discussed above, only the exponentials are 
left to govern the temperature behaviour: 
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In this region, the deviation of magnetization from its 

maximal value is well represented by the leading 
exponential 

( ) ).2(;/2exp6 222
3 JSTNNJS

N
M πβπ <−∆ (13) 
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A similar expression has been used in a number of 
papers, e.g. [14, 17, 18], to fit the lowest temperature part 
(below 30  K) of the magnetization curve in nanoparticles. 

As mentioned before, we are interested in the region 
of higher temperatures, as now defined by the condition 
(9a). Let us examine whether the new form of the 
modified Bloch law  

 
( ) CTBTMTM +−= 2/3

0 1/                  (14) 
 

agrees with the existing numerical and experimental data. 
For instance, we may use the numerical analysis of iron 
magnetic clusters of different size described in [13, 26], 
which can be calibrated against the bulk (  ∞→N  ) 
behavior shown in Fig. 4 of Ref.[26]. Thus we find  

.0064.0/,7.6/,0,057.0,2/3 JSkJSTkCB BcB==== γα
  According to (c) this gives the estimate for the threshold 
temperature  ( ) ( )KPT 30201 −=   for the clusters of 

size  7253 =N   and  3393 =N   - in agreement with 
the values of the gap in magnon spectrum calculated in 
[26], Fig.3. It should be kept in mind that expression Eq. 
(11) may not be used to represent the data beyond this 
temperature,  ( ),1=< PTT  where the exponential 
dependence, Eq. (10), takes over. 

For the cubic cluster of  3393 =N   atoms, i.e. 
around  2   nm size, we find  075.0,134.0 == CB   
(as compared to 96.1,064.0 == αγ   for Eq. (0) ), 
(Fig. 1).   

 
 

Fig. 1. Magnetization of the 339 atoms ferromagnetic cluster  
[26] (circles) and its fit by Eq. (14). 

 
 

For an even smaller cluster of  1373 =N   atoms the 
results are  1.0,174.0 == CB  (respectively  

07.2,078.0 == αγ ), Fig. 2.  
 

 
Fig. 2. Magnetization of the 137 atoms ferromagnetic  

cluster [26] (circles) and its fit by Eq. (14). 
 
 

It can be seen that (11) agrees well with the results of 
[26] within a similar standard fitting error. Interestingly, 
the ratio of the size dependent coefficients in (11)  
( ) ( ) 75.0137/339 =CC   corresponds to the 

dependence  NC /1   following from the expression 

(9),  ( ) .74.0339/137 3/1   However, it should be kept 
in mind that Figs. 1 and 2 refer to the total magnetization, 
which includes surface and central spins. Thus, it is natural 
to expect a higher value for the  B   coefficient than in the 
bulk, because the larger surface to volume ratio can be 
roughly thought of as a decrease of the effective coupling 
constant  J  . Numerical analysis allows to examine the 
magnetization of the central spins, which are more "3D 
coordinated". In this case fitting with the formula (11) 
leads to an even better quantitative agreement with the 
analytical expression (9):  ,057.0=B    .048.0=C   
As can be seen from Fig. 4 of Ref. [26], the central spin 
magnetization increases for larger samples of cubic 
structure. 

In Ref. [16] manganese and copper ferrite 
nanoparticles of up to  10  nm are investigated in the dilute 
regime, so that the observed properties can be attributed to 
individual particles. It is found that the modified Bloch 
law (0) can account well for the finite size effects on the 
temperature dependence of the saturation magnetization. 
At the same time, the values of the exponent α  for 
particles of almost the same size are found above and 
below the bulk value, Table 3. In Figs. 3 and 4 we show 
that our formula can represent the experimental data 
equally well. 
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Fig. 3. Magnetization of the 9 nm nanoparticle [16] (circles)  

and its fit by Eq. (14). 
 

In (Fig. 3) the magnetization of the  9   nm sample, 
denoted as  1Mn   in Ref. [16], is matched by the 
continuous curve according to (11) with the following set 
of parameters:  ,/1.5130 mkAM =    

142/35 1095.0,1032.6 −−−− ×=×= KCKB . The 
parameters obtained in [16] for the expression (0) are:  

45.1,1.7,/5150 === − αγ αKmkAM   (curve 
not shown). 

 F  
Fig. 4. Magnetization of the 7.4 nm nanoparticle [16] 

 (circles) and its fit by Eq. (14). 
 

In Fig. 4 the respective parameters corresponding to 
the continuous curve fitting the magnetization of the  7.4  
nm sample  Mn2   are:  ,/9.4350 mkAM =    

142/35 1006.2,1033.6 −−−− ×−=×= KCKB  . The 
ones obtained in [16] are:  

6.1,46.6,/4300 === − αγ αKmkAM   (curve 
not shown). 

It is interesting that in both cases we obtain the value 
of B close to that in the bulk [16], while the sign of the 
coefficient  C  differs in correspondence to the value of  α  
being above or below 1.5. We note in this context that the 
sign and magnitude of this coefficient depend on the shape 
of the sample and this difference might be explained by a 
more asymmetric shape of the 7.4  nm nanoparticles. 

 
 

3. Conclusions 
 
The examples analyzed above demonstrate that the 

derived finite size generalization of the Bloch law in (11) 
is well suited for the description of the temperature 
dependence of the saturation magnetization of 
nanoclusters and ferromagnetic nanoparticles. Its 
advantage with respect to the phenomenological form 
usually employed for this purpose is that it has a clear 
microscopic motivation and gives a better understanding 
of the nature of their magnetic properties. In particular, it 
explains that the irregular size dependent pattern of the 
exponent  α   in (0) is caused by the shape asymmetry of 
the nanoparticles obtained in the technological process. 
The lower temperature limit for the formula has a clear 
physical explanation and emerges in a transparent way 
when trying to fit the data beyond this limit, signalling the 
crossover into a new physical regime. On the contrary, the 
"traditional" formula, due to its flexibility, tends to hide 
this qualitative change of behavior. 
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